Backbone colorings along perfect matchings

نویسندگان

  • Hajo Broersma
  • Jun Fujisawa
  • Kiyoshi Yoshimoto
چکیده

Given a graph G = (V, E) and a spanning subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper vertex coloring V → {1, 2, . . .} of G in which the colors assigned to adjacent vertices in H differ by at least two. In a recent paper, backbone colorings were introduced and studied in cases were the backbone is either a spanning tree or a spanning path. Here we study the case where the backbone is a perfect matching. We show that for perfect matching backbones of G the number of colors needed for a backbone coloring of G can roughly differ by a multiplicative factor of at most 4 3 from the chromatic number χ(G). We show that the computational complexity of the problem “Given a graph G with a perfect matching M , and an integer `, is there a backbone coloring for G and M with at most ` colors?” jumps from polynomial to NP-complete between ` = 3 and ` = 4. Finally, we consider the case where G is a planar graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete forcing numbers of polyphenyl systems

The idea of “forcing” has long been used in many research fields, such as colorings, orientations, geodetics and dominating sets in graph theory, as well as Latin squares, block designs and Steiner systems in combinatorics (see [1] and the references therein). Recently, the forcing on perfect matchings has been attracting more researchers attention. A forcing set of M is a subset of M contained...

متن کامل

Backbone colorings along stars and matchings in split graphs: their span is close to the chromatic number

We continue the study on backbone colorings, a variation on classical vertex colorings that was introduced at WG2003. Given a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring for G and H is a proper vertex coloring V → {1, 2, . . .} of G in which the colors assigned to adjacent vertices in H differ by at least λ. The algorithmic and combinatorial propert...

متن کامل

λ-Backbone Colorings Along Pairwise Disjoint Stars and Matchings

Given an integer λ ≥ 2, a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring of (G,H) is a proper vertex coloring V → {1, 2, . . .} of G, in which the colors assigned to adjacent vertices in H differ by at least λ. We study the case where the backbone is either a collection of pairwise disjoint stars or a matching. We show that for a star backbone S of G t...

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Perfect $2$-colorings of the Platonic graphs

In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and  the icosahedral graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003